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Abstract. In this work the diffusion of non-interacting adsorbates on a random AB alloy surface is consid-
ered. For this purpose a simple cubic (sc), body-centered cubic (bcc) or face-centered cubic (fcc) auxiliary
metal lattice is introduced. The auxiliary lattice is truncated parallel to its (100) plane in such a way
that the fourfold hollow positions of the metal surface form a regular net of adsorption sites with square
symmetry. The adsorption energy of each adsorption site is determined by its own environment, i.e. by
the numbers of direct A or B neighbors. The Monte-Carlo method has been utilized to simulate surface
diffusion of adsorbates on such energetically heterogeneous alloy surfaces and to calculate the tracer, jump
and chemical diffusion coefficients. The chemical diffusion coefficient was calculated via two different ap-
proaches: the fluctuation and the Kubo-Green method. The influence of energetical heterogeneities on
the surface diffusion is largely pronounced at low temperatures and low surface coverages, where most of
the adatoms are trapped by deep adsorption sites. It was found that at low temperatures the sequential
occupation of the different types of adsorption sites can be observed.

PACS. 68.35.Fx Diffusion; interface formation – 68.35.Bs Surface structure and topography – 68.35.-p
Solid surfaces and solid-solid interfaces

1 Introduction

Diffusion of adsorbed particles on heterogeneous surfaces
is probably one of the most important surface processes
and occurs in a great number of technical devices such as
gas separation and purification tubes, in automotive catal-
ysis, etc. The detailed understanding of such processes is
essential for technological improvements but appears to
be also very important from the fundamental aspects of
basic science.

In recent years the development and improvement of
powerful experimental techniques for surface analysis on
the atomic scale has substantially improved our knowledge
about the energetic surface topography. Systematic stud-
ies have encouraged the development of adequate refined
atomistic models for heterogeneous surfaces capable of in-
cluding the energetic surface topography in the statistical
description of heterogeneity [1–13]. Surface diffusion on
heterogeneous (and on homogeneous surfaces as well) is a
many particle process. The exact analytical calculation of
diffusion coefficients is possible only for a few exceptional
cases (e.g. for noninteracting lattice gases). However, in
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more realistic cases analytical expressions cannot be de-
rived and Monte-Carlo simulations have proven to be an
adequate and powerful tool to study surface diffusion in
the framework of the lattice-gas scheme [14–16].

In the present paper we characterize surface diffusion
of non-interacting adsorbates on the energetically hetero-
geneous (100) surface of a random cubic AB alloy. It is
assumed that the characteristics of the adsorption sites
are determined by the relative local concentration of A
and B species in their direct vicinity. It is quite obvious
that the model considered here is highly idealized and is
not meant to reproduce a particular experimentally stud-
ied system. However, the intention of this work is (1) to
identify and characterize the most prominent features of
surface diffusion processes for our simple alloy model and
(2) to draw general conclusions on the effects of a finite
number of different adsorption sites on surface diffusion
and (3) to provide a basis for the evaluation of experi-
mental diffusion studies on heterogeneous surfaces.

The paper is organized as follows: in Section 2 we de-
scribe in detail the lattice gas model and the Monte-Carlo
simulational technique used to obtain the desired diffu-
sion quantities. Results are presented and discussed in
Section 3. Finally, we give our conclusions in Section 4.
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Fig. 1. Schematic representation of the energetic surface het-
erogeneity for the (100) surface of a random AB alloy. The
inset shows the metal lattice built up by A (filled symbols,
concentration xA) and B atoms (open symbols, concentration
xB = 1 − xA). The boxes determine single elementary cells
of the square lattice. Adatoms may occupy fourfold hollow
positions, i.e. the centers of the elementary cells. The poten-
tial used for the simulation of adatom surface diffusion is also
shown. The adsorption energy of each site, εi(nA), depends
on its configuration according to equation (2). There are five
different adsorption sites with adsorption energies εi(nA) and
probabilities PnA .

2 Basic definitions and simulational details

2.1 The lattice-gas model

Let us consider a simple cubic (sc), body-centered cubic
(bcc) or face-centered cubic (fcc) metal lattice. The reg-
ular sites of this three-dimensional lattice are randomly
occupied by only two kinds of metal atoms A and B. De-
spite its simplicity this model of a random binary AB alloy
is well-suited to describe many technologically interesting
alloy systems. However, in this work we will consider the
AB alloy just as a support for adsorbed species. We as-
sume that the bulk is truncated parallel to the (100) plane
in such a way that the topmost layer of the AB alloy forms
an unreconstructed surface with square symmetry. This
two-dimensional auxiliary lattice of randomly arranged A
and B atoms form a square net (or lattice) of fourfold hol-
low sites which are considered to constitute the lattice of
adatom adsorption sites (traps). It is trivially to note that
if A and B atoms are undistinguishable (i.e. chemically
identical) this model describes the adsorption of adatoms
on a homogeneous metal surface. The presence and ran-
dom distribution of chemically different A and B atoms
in the direct vicinity of every adsorption sites causes an
energetic surface heterogeneity which obviously influences
the thermally activated surface mobility of adatoms, i.e.
the surface diffusion.

In Figure 1 the metal atoms occupying the sites of the
two-dimensional auxiliary lattice are schematically repre-
sented by filled and open symbols, respectively. It is as-

sumed that the concentration of A atoms (for instance
the filled symbols) is given by xA. Thus, if vacancies in
the metal lattice are not considered , xB = 1− xA is the
concentration of B atoms (represented by the empty sym-
bols). As already mentioned we assume that these two
species are randomly distributed. Each elementary cell of
this lattice (as an example, one of them is shown by a box
in the inset of Fig. 1) defines a single adsorption site.

Adjacent adsorption sites are separated by potential
wells. Surface diffusion of adatoms requires crossing of
these saddle points. As in previous work we assume that
the saddle point energies are uniformly given by a fixed
value, εSP, throughout the whole lattice. However, the
depth of the potential at the adsorption site i, the ad-
sorption energy εi, depends on the configuration of the
site, i.e. on the number of A and B atoms present in the
corresponding elementary cell. In order to calculate εi we
introduce pairwise interaction energies between adatoms
and A or B atoms, εA and εB, respectively. We assume
that these interaction energies behave additive, i.e.

εi(nA, nB) = nAεA + nBεB. (1)

Here nA and nB describe the number of A and B atoms
on metal sites in the direct vicinity of the corresponding
adsorption site (nearest neighbor (NN) sites). It is impor-
tant to note that we consider only those NN metal atoms
which are located within the topmost metal layer [17]. For
our square surface we therefore have nA + nB = 4 and, if
εA 6= εB, there are five energetically different adsorption
sites. Without loss of generality we assume εB = 0:

εi(nA, nB) ≡ εnA = nAε0 (2)

where ε0 = εA > 0 is a constant and nA = 0 . . . 4. The
choice of εA > εB causes the fully A-coordinated adsorp-
tion sites to be the energetically most favorable sites for
adatoms.

The characteristic features of our adsorption lattice are
schematically outlined in Figure 1. As already mentioned
there are five different kinds of adsorption sites at the al-
loy surface, for each of them a representative elementary
cell is drawn as an illustrative example. The probability
of the different adsorption sites depends on the bulk con-
centration of A atoms xA according to

PnA =

(
nA

4

)
xnA

A (1− xA)4−nA =

(
nA

4

)
xnA

A (xB)nB . (3)

In the present work we will investigate the effects of the
energetical surface heterogeneity on the surface diffusion
of adatoms. For this purpose we will study the most sim-
plest case of non-interacting adatoms on the energetically
heterogeneous square surface outlined above. Thus the
lattice-gas Hamiltonian of the adatoms can be written as:

H = −
N∑
i

ciεi, (4)

where εi is given by equation (2) and the occupation of
lattice sites by adsorbates is described by local occupation
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variables ci defined as

ci =

{
1, if site i is occupied

0, if site i is vacant.
(5)

Double occupancy of lattice sites is excluded.
It is quite obvious that the model outlined above is

highly idealized. Especially the restriction to non-inter-
acting adatoms is rather unrealistic in most cases. How-
ever, we would like to emphasize that (a) this model is
not meant to reproduce a particular experimental system
and (b) the intention of the present work is to investigate
the effect of energetically surface heterogeneity on diffu-
sion. At this point it is also important to note that the
possibility of adatom-induced surface reconstructions are
completely ignored in the present work.

2.2 The Monte-Carlo algorithm

In our Monte-Carlo algorithm the model given by equa-
tions (2, 4) is simulated by two interpenetrating L × L
square sublattices with periodic boundary conditions. In
the first lattice, the metal auxiliary lattice, a fraction xA

of lattice sites is preoccupied at random by A atoms while
the remaining sites host B atoms. Then, this rigid dis-
tribution of metal atoms is used to calculate site specific
adsorption energies εi in the second, the adatom lattice,
according to equation (2). Finally, an initial adatom con-
figuration is generated by throwing θL2 particles at ran-
dom on the adatom sublattice. Here θ denotes the desired
adatom coverage.

The MC simulation of surface diffusion is performed
in the canonical ensemble applying the Metropolis impor-
tance sampling algorithm [18,19]. We assume that the el-
ementary steps of surface diffusion are jumps of adsorbed
particles from occupied initial sites i to empty nearest
neighbor sites j. In essence, the energy barrier which needs
to be overcome by diffusing particles, is given by the en-
ergy difference between saddle point energy (i.e. the max-
imum potential energy along the trajectory of a jumping
adatom) and the initial adsorption energy,

∆εi = εSP − εi = εSP − nAε0. (6)

The associated jump probabilities, P J
i are given by [8]

P J
i (nA) =

1

κ
exp

[
−

∆εi
kBT

]
(7)

with κ as normalization factor. κ essentially determines
the time in which an adsorbed atom is allowed to attempt
a jump, as explained in detail in reference [3]. In order to
optimize the computational time of a Monte-Carlo algo-
rithm a suitable choice of κ is indispensable. An obvious
choice would be

κ = κmax = exp

(
−

∆εi(min)

kBT

)
· (8)

Here ∆εi(min) represents the activation energy for the
most favorable physically realizable jump [8]. This choice
avoids jump events with Pj > 1 and has been used
throughout this work.

The jump algorithm used in the present work has been
discussed in detail in [8] and will be summarized only
briefly: first, an initial site i of the adatom lattice is picked
at random, if filled, an adjacent final site j is randomly se-
lected. If the destination is vacant, a jump can occur with
the probability P J

i given by equation (7), otherwise no
jumps occurs. One Monte-Carlo step (MCS) corresponds
to L2 interrogations (in random order) of adatom lattice
sites.

Before starting a diffusion run a desired temperature T
was established and a large number of initial MCS’s were
performed to reach thermodynamical equilibrium. As in
reference [8] approach to equilibrium is monitored by fol-
lowing the total energy and is assumed to occur when
this quantity starts to fluctuate about an average value.
The time (in units of MCS’s) needed for equilibration de-
pends on lattice size, temperature and coverage. Typically
5× 103 MCS are required to establish equilibrium in lat-
tices containing up to 64 × 64 sites. In order to obtain
accurate values of the desired surface diffusion coefficients
(to be discussed below), diffusion runs of up to 6 × 104

MCS’s for up to 136 different initial configurations were
performed. These simulations were carried out using the
supermassive parallel Intel Paragon supercomputer of the
Jülich research center.

2.3 Determination of surface diffusion coefficients

After approaching thermodynamical equilibrium, we have
measured the tracer surface diffusion coefficient D∗ by
following the non-correlated random-walk of N = θL2

tagged particles. D∗ is defined through the generalized
definition

D∗ = lim
t→∞

[
1

2dt

〈
|Ri(t)−Ri(0)|2

〉]
(9)

where d is the Euclidean dimension, (in the case of surface
diffusion d = 2); the vector R(t) determines the position

of a tagged particle at time t, and (R(t)−R(0))
2

is its
mean square displacement, which is expressed in units of
the lattice constant. The tracer diffusion coefficient is a
single particle diffusion coefficient. However, in the course
of Monte-Carlo simulations it is quite useful to average
over all N particles according to

D∗ = lim
t→∞

[
1

2dNt

N∑
i=1

〈
|Ri(t)−Ri(0)|2

〉]
. (10)

We note that the tracer diffusion coefficient can be de-
fined as the product of a tracer correlation factor f [20,
21], a vacancy availability factor V , and an average jump
probability

〈
P J
〉

[22,23],

D∗ = fV
〈
P J
〉
. (11)
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The chemical diffusion coefficient D, which is a many par-
ticle diffusion coefficient, is determined via two different
approaches, the fluctuation method and the Kubo-Green
method.

In essence, the fluctuation method measures the par-
ticle number autocorrelation function, fn(t)/fn(0), for a
small probe region embedded in the whole two dimen-
sional lattice. The ratio fn(t)/fn(0) is then compared with
the theoretical curve [24,25], yieldingD, which we callDF.
Thus, this method is a computer simulation of the field
emission fluctuation method [24] used experimentally to
determine adsorbate diffusion coefficients.
For the autocorrelation function, we can write

fn(t)

fn(0)
=
〈δN(t)δN(0)〉

〈(δN2)〉
· (12)

Here N is the number of adatoms in the probe area.〈
(δN)2

〉
is the mean square number fluctuation in an area

A containing 〈N〉 particles. Details of this method are pre-
sented in references [16,26]. In the present work we use a
8× 8 and 16× 16 square probes for the determination of
DF.

The second method for determining the chemical dif-
fusion coefficient is based on the Kubo-Green equation,
which we write here as [27]

DKG =

(
∂ [µ/kBT ]

∂ ln θ

)
DJ. (13)

Here µ is the chemical potential. DJ is the jump diffusion
coefficient given by [1]

DJ = lim
t→∞

 1

2dNt

〈(
N∑
i=1

|Ri(t)−Ri(0)|

)2〉 . (14)

The jump diffusion coefficient (sometimes also referred to
as kinetic factor) is a many particle diffusion coefficient.

The thermodynamic factor of equation (13) is obtained
in either one of its two equivalent forms

(
∂ [µ/kBT ]

∂ ln θ

)
T

=


〈

(δN)
2
〉

〈N〉

−1

, (15)

either via the differentiation of adsorption isotherms ob-
tained in the grand canonical ensemble or via the normal-

ized mean square fluctuations
〈

(δN)2
〉
/ 〈N〉 obtained in

the canonical ensemble.
As in previous studies [8,28], the various diffusion co-

efficients are normalized with respect to D0, the chemical
diffusion coefficient of Langmuir gas.

3 Results and discussion

In this section we will present and discuss the results
of Monte-Carlo simulations in order to demonstrate the

Fig. 2. The probabilities of the different adsorption sites, PnA

versus xA. Symbols denote Monte-Carlo results. The solid lines
represent the theoretical predictions according to equation (3).
The statistical errors are smaller than the size of the symbols
used.

influence of the energetical surface heterogeneity on the
thermodynamical and kinetical properties of adatoms on
the (100) surface of a random AB alloy. We will start with
a description of purely thermodynamical aspects (Sect.
3.1). Then, in Section 3.2 the emphasis will be on the sur-
face diffusion of adatoms on energetically heterogeneous
alloy surfaces.

3.1 Partial coverages, adsorption isotherms
and the thermodynamic factor

As already mentioned the (100) surface of a random AB
alloy is assumed to consist of five different adsorption
sites. In Figure 2 the probabilities of these sites, PnA , are
shown versus composition of the AB alloy. The solid lines
represent the theoretical predictions according to equa-
tion (3). As is intuitively expected for low A bulk con-
centrations, xA → 0, fully B-coordinated adsorption sites
dominate, and vice versa. At intermediate bulk concentra-
tions, 0.2 ∼< xA ∼< 0.8, mixed-coordinated adsorption sites
prevail. In order to test the statistical accuracy of our nu-
merical algorithm we have also calculated PnA via Monte-
Carlo simulations (symbols). As expected the agreement
between theory and MC data is excellent.

The coverage dependent distribution of adatoms on the
different adsorption sites is shown in Figure 3 for different
characteristic temperatures and a fixed value of xA = 0.2.
In the absence of adatom-adatom interactions the exact
solution of this problem can be obtained from classical
thermodynamics. Let us define θnA (nA = 0 . . . 4) as the
fraction of occupied sites with energy εnA (nA = 0 . . . 4).
For the calculation of site specific surface coverages, θi, as
a function of total coverage θ the chemical potentials of
adatoms on the various adsorption sites µnA (nA = 0 . . . 4)
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Fig. 3. Site specific adatom coverages, θi (symbols), versus
total adatom coverage θ for three different characteristic tem-
peratures expressed in terms of ε0/kBT : (a) 0.30, (b) 1.20
and (c) 4.82. Results are shown for a fixed bulk composi-
tion, xA = 0.2. Symbols denote Monte-Carlo results, while
solid lines represent thermodynamical calculations according
to equations (16, 17). The statistical errors are smaller than
the size of the symbols used.

is expressed according to

µnA = µ0 − εnA + kBT ln

(
θnA

1− θnA

)
. (16)

Here µ0 is the chemical potential of the noninteracting
Langmuir gas. At thermodynamical equilibrium the chem-
ical potentials are equal (µnA ≡ µ) and the total coverage,
θ, is given by

θ =
4∑
i=0

PnAθnA , (17)

where the values of PnA are given by equation (3). The
system of equations (16, 17) is solved numerically to yield
the coverage dependence of the site specific surface cov-
erages, θnA(θ). These quantities are shown in Figure 3.
There is an excellent agreement between Monte-Carlo re-
sults (symbols) and theoretical values (solid lines) again
indicating the statistical accuracy of the MC algorithm.

The data shown in Figure 3 indicate that for a given
total coverage θ the site specific coverages θnA increase
with increasing nA. These differences are enhanced upon
decreasing the temperature. At low temperatures the se-
quential occupation of the different sites can be observed,
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Fig. 4. Adsorption isotherms i.e. surface coverage θ versus
reduced chemical potential µ/kBT for two different values of
xA as indicated. The different curves are labelled according
to their temperature (expressed in terms of ε0/kBT ). Monte-
Carlo results are represented by symbols. The solid lines are
calculated by solving equations (16, 17). The statistical errors
are smaller than the size of the symbols used.

Figure 3c. In fact, at very low coverages only the deepest
adsorption sites, θ4, are occupied while the other sites re-
main empty. Then after saturation of these sites (θ4 ≈ 1)
the occupation of the next type of sites (θ3) starts while
the less deeper sites still remain empty. The sequential
occupation of adsorption sites dominates the behavior of
the system at low temperatures as is discussed in detail
below.

The calculation of adsorption isotherms is also possible
by solving equations (16, 17). The results of this procedure
are shown in Figure 4 for three different temperatures and
for two values of the bulk composition xA. At low temper-
atures, ε0/kBT = 9.82, the isotherms exhibit a steplike
structure consistent with the sequential occupation of dif-
ferent adsorption sites.

According to equation (15) the thermodynamic fac-
tor can be obtained via the differentiation of adsorption
isotherms such as shown in Figure 4. The result of this pro-
cedure is presented in Figure 5 and clearly demonstrates
that the thermodynamic factor presents sharp peaks which
are largely pronounced at low temperatures. These peaks
are attributable to the steps (i.e. the flat regions) of the
corresponding adsorption isotherms (Fig. 4).

Adsorption isotherms and the thermodynamic factor
are accessible also via MC simulations in the grand canon-
ical ensemble (the method used to calculate them is well



528 The European Physical Journal B

0.0 0.2 0.4 0.6 0.8 1.0
0

25

50

75

100

4.82

4.82

9.62

(a)

(b)

Surface Coverage θ

0

20

40

60

9.62

xA=0.2

xA=0.1

10-3 10-2 10-1

1

10

T
he

rm
od

yn
am

ic
  F

ac
to

r 
  d

 [µ/
K

B
T

] /
 d

ln
 θ

10-4 10-1

1

10

 

 

 

Fig. 5. Thermodynamic factor calculated via the numeri-
cal differentiation of adsorption isotherms according to equa-
tion (15) versus surface coverage θ for two different values of xA

as indicated. The temperature is expressed in terms of ε0/kBT .
The symbols denote the results of MC simulations in the grand
canonical ensemble. The statistical errors are smaller than the
size of the symbols used.

discussed in Ref. [29]). Figure 5 clearly demonstrates that
the agreement between exact calculations (lines) and sim-
ulations (symbols) is excellent.

3.2 Surface diffusion

In this section we will focus on the analysis of the coverage
dependence of the tracer and chemical surface diffusion
coefficients and related quantities. Figure 6 shows Monte-
Carlo results for the normalized tracer diffusion coefficient
D∗/D0 for different values of T and xA, respectively. From
a first inspection of Figure 6 it is intuitively obvious that
the effect of the surface heterogeneity is markedly pro-
nounced at low temperatures. At relatively high temper-
atures, ε0/kBT = 0.30, the normalized tracer diffusion
coefficient decreases monotonic upon increasing the total
surface coverage θ. Even at low values of xA (xA = 0.1
(Fig. 6a)), the absolute values of D∗/D0 are slightly re-
duced with respect to the Langmuir case indicating that
tracer diffusion is slowed down as adatoms are adsorbed
(and trapped) at the deeper adsorption sites. We note that
for the Langmuir case, which is to be expected as T →∞
(noninteracting limit), the tracer diffusion coefficient is
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Fig. 6. Normalized tracer diffusion coefficient D∗ versus to-
tal coverage θ for two different values of xA; (a) xA = 0.1,
(b) xA = 0.2. Shown are results for different temperatures ex-
pressed in terms of ε0/kBT . The insets show the curves for
ε0/kBT = 4.82. As in previous studies [8,28], the diffusion
coefficients are normalized with respect to D0, the chemical
diffusion coefficient of Langmuir gas. The statistical errors are
smaller than the size of the symbols used.

a monotonic function of surface coverage given by (see
Eq. (11))

D∗

D◦
= fV = f(1− θ). (18)

Here f is the tracer correlation factor [20,21], which for
the two-dimensional Langmuir gas is approximately given
by 1− θ/2.

Upon decreasing the temperature, the effects of the
surface heterogeneity become more pronounced. The nor-
malized tracer diffusion coefficient is no longer a mono-
tonic function of surface coverage but goes through a well
pronounced maximum at intermediate coverages (see the
inserts of Fig. 6). In order to explain this maximum we
note that at low temperatures and coverages, θ ∼< P4(xA)
(see Eq. (3)), most of the adatoms are trapped at the
deepest adsorption sites. Surface diffusion requires adatom
jumps out of these sites. However, the average jump prob-
abilities

〈
P J
〉

are low and essentially determine the behav-
ior of D∗. After saturation of the deepest adsorption sites,
the sequential occupation of higher adsorption sites causes
a gradual increase of

〈
P J
〉
, which is reflected by a gradual

increase of D∗/D◦. At higher coverages, i.e. where most
of the deeper adsorption sites are saturatured, the tracer
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Fig. 7. Same as Figure 6 for the normalized jump diffusion
coefficient, DJ/D0.

diffusion coefficient goes through a relative maximum and
finally decreases to zero as θ approaches unity. This final
decrease of D∗ at high coverages is intuitively expected as
the vacancy availability factor V is very small under such
circumstances.

Figure 7 presents the coverage dependence of the nor-
malized jump diffusion coefficient, DJ/D

◦ given by equa-
tion (14). It is quite obvious that D∗ and DJ behave in a
strikingly similar way, despite their substantially different
meanings (see Eqs. (9, 14)).

Figure 8 compares the coverage dependence of the
chemical diffusion coefficient calculated via fluctuation
(open symbols) and Kubo-Green method (filled symbols),
respectively. At high temperatures both methods show a
acceptable agreement. However, significant discrepancies
appear at low temperatures.

Discrepancies between DKG and DF have already been
observed for diffusion on homogeneous surfaces in the pres-
ence of ad-ad interactions causing first order phase tran-
sitions [7] or when the effects of the energetical topogra-
phy are included [30]. An overall consistent explanation
of these findings has been given in reference [30]: the fluc-
tuation method fails when the applicable length scale of
the lattice gas system becomes comparable to the probe
dimension, or in other words, when the probe misses the
long wavelength fluctuations of the particle density. This
argument is reinforced by previous results [31] indicating
that discrepancies between DKG and DF in the presence
of phase transitions decrease when the size of the probe
area used for the calculation of DF is increased (however,
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Fig. 8. Chemical diffusion coefficient calculated by the fluc-
tuation method, DF (open symbols), and by the Kubo-Greem
method, DKG (filled symbols), as a function of coverage for
two different values of xA as indicated. Different temperatures
expressed in terms of ε0/kBT are shown. Error bars are shown
to characterize the statistical errors of the Monte-Carlo simu-
lations.

an increase in the probe area produces a costly increase in
computing time). Therefore, we conclude that the Kubo-
Green method for determining the chemical diffusion coef-
ficient is more appropriate in our case and we will proceed
to analyse this quantity.

At high temperatures the chemical diffusion coefficient
does not depend much on coverage (Fig. 8). This behavior
is similar to that of the homogeneous (i.e. Langmuir) case.
However, the absolute value of DKG is reduced with re-
spect to the Langmuir gas due to the presence of adatoms
adsorbed at sites with different adsorption energies. A very
different situation is observed at low temperatures (Figs. 8
and 9c). The DKG versus θ curves exhibit two plateaus
and low and high coverages, respectively, and a transition
regime in between.

In order to explain this behavior we recall that the
chemical diffusion coefficient can be expressed as a prod-
uct of a kinetic (the jump diffusion coefficient) and a
thermodynamic factor (Eq. (13)). This process is illus-
trated in Figure 9. The continuous increase of the jump
diffusion coefficient for θ ∼< 0.7 and its wide peak at
θ ≈ 0.7 (shown in Fig. 9a) in conjunction with the peaks
of the thermodynamic factor (Fig. 9b) together determine
the low temperature behavior exhibited by the chemical
diffusion coefficient. Figure 9c shows that DKG exhibits
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Fig. 9. (a) Jump diffusion coefficient, DJ, (b) thermodynamic
factor and (c) chemical diffusion coefficient, DKG as a function
of coverage for xA = 0.2 and ε0/kBT = 4.82. The insets (in (b)
and (c)) show the low coverage region. The statistical errors
are smaller than the size of the symbols used.

a series of steps which correspond to the peaks of the ther-
modynamic factor, which in turn represent the sequential
occupation of different adsorption sites.

4 Conclusions

In this work we have considered the diffusion of adsorbates
on a random AB alloy surface. For this purpose we have
introduced a simple cubic (sc), body-centered cubic (bcc)
or face-centered cubic (fcc) auxiliary metal lattice, which
is truncated parallel to its (100) plane in such a way that
the fourfold hollow positions of the metal surface form a
regular net of adsorption sites with square symmetry. The
adsorption energy of each adsorption site is determined by
its own environment, i.e. by the numbers of direct A or B
neighbors. This model is probably the simplest realization
of an energetically heterogeneous alloy surface. Although
this model is highly idealized it is possible and useful to
study the general trends and peculiarities of adsorbate
diffusion on such surfaces.

The work presented here has clearly shown that sur-
face heterogeneities strongly influence adsorbate diffusion.
The effects are largely pronounced at low temperatures
and low surface coverages, where most of the adatoms are
trapped by deep adsorption sites. It was found that at

low temperature the sequential occupation of the different
types of adsorption sites can be observed. The chemical
diffusion coefficient was found to exhibit stepwise increases
corresponding to the sequential saturation of different ad-
sorption sites. In contrast, the tracer and jump diffusion
coefficients show a continuous increase at low coverages,
i.e. when the more stable adsorption sites are filled. Upon
increasing the coverage both quantities pass through a rel-
ative maximum which is explained by the decrease of the
vacancy availability factor V .

It is a pleasure to acknowledge many helpful and stimulat-
ing discussions with K. Kehr, V. Pereyra, M. Tringides and
G. Zgrablich. This work was made possible by the Heisenberg
program of the Deutsche Forschungsgemeinschaft (DFG).
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